MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone

Mark L. Paddock*, Sandra E. Wiley†, Herbert L. Axelrod‡, Aina E. Cohen‡, Melinda Roy§, Edward C. Abresch‡, Dominic Capraror, Anne N. Murphyr, Rachel N. Nechushtai‡, Jack E. Dixon‡§, and Patricia A. Jennings**

Departments of *Physics, †Pharmacology, ‡Chemistry and Biochemistry, and §Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92037; †Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025; and **Department of Plant and Environmental Sciences, The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Givat Ram 91904, Israel

Communicated by Douglas C. Rees, California Institute of Technology, Pasadena, CA, August 1, 2007 (received for review July 9, 2007)

Iron–sulfur (Fe–S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Å x-ray crystal structure of the first identified outer mitochondrial membrane Fe–S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the ~650 reported Fe–S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a β-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe–2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe–2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe–S cluster transfer.

Results

The Overall Unique Structure and Domain Topology of MitoNEET. In an effort to understand the structural properties of this protein, we produced a soluble form of recombinant human mitoNEET by MAD phasing (10). The biophysical properties of mitoNEET suggest it may participate in a redox-sensitive signaling and/or in Fe–S cluster transfer.

Iron (Fe) is a vital trace element for virtually all organisms. Incorporation of this transition metal into iron–sulfur (Fe–S) clusters forms cofactors integral to diverse biological pathways involved in the capture and metabolism of light and chemical energy (1, 2). Because free iron can be highly toxic, an elaborate array of proteins has evolved to facilitate the transfer of iron through cell compartments, to insert iron into Fe–S clusters, and to incorporate Fe–S clusters into proteins. Fe–S cluster assembly takes place primarily, although not exclusively, within the mitochondrial matrix of eukaryotic cells, and defects in mitochondrial cluster assembly and export have profound consequences for rates of growth, iron accumulation, oxidative stress, and heme biosynthesis (1, 2).

Mitochondrial dysfunction is associated with insulin resistance and the development of type 2 diabetes (3). Recent studies suggest that disease pathogenesis involves diminished mitochondrial oxidative capacity in insulin-sensitive tissues. Pharmacologic agents extensively used to treat insulin resistance such as the thiazolidinedione (TZD) pioglitazone are known to enhance oxidative capacity and normalize lipid metabolism (4, 5). Although TZDs are conventionally thought to operate through binding to peroxisome proliferator-activated receptors, a recent study by Colca and colleagues (6) identified an additional binding target within mitochondrial membranes that was named mitoNEET. MitoNEET was determined to be an integral protein of the outer mitochondrial membrane (OMM) by a series of studies, including immuno-electron microscopy and detailed fractionation studies of highly purified rat liver mitochondria. An amino-terminal signal sequence within the first 32 residues, containing a predicted transmembrane domain, targets mitoNEET to the outer membrane. The orientation of this protein toward the cytoplasm was established by proteolytic digestion of this protein on intact rat liver mitochondria. Deficiency of this protein in mice results in a compromise in the respiratory capacity of heart mitochondria (7).

MitoNEET belongs to an ancient family of proteins for which the hallmark is the presence of a unique 39-aa CDGSH domain [consensus sequence C-X-C-X2-(S/T)-X3-P-X-C-D-G-(S/A/T)-H]. Although currently annotated as a zinc finger moiety in the NCBI protein database (8), the CDGSH domain actually binds a 2Fe–2S cluster. As such, mitoNEET is the first identified 2Fe–2S cluster protein located on the OMM (7, 9). The absorption spectrum has a peak near 460 nm attributed to the 2Fe–2S cluster that is reversibly reduced by dithionite and oxygen. The cluster is labile at pH ≤8.0, as shown by the loss of the spectral signature of the 2Fe and 2S as shown by mass spectroscopy (9). We report that this novel OMM protein folds into a unique homodimeric structure with one 2Fe–2S cluster bound to each protomer within the dimer determined by x-ray crystallography using multiwavelength anomalous dispersion (MAD) phasing.

Abbreviations: TZD, thiazolidinedione; OMM, outer mitochondrial membrane; MAD, multiwavelength anomalous dispersion; SSRL, Stanford Synchrotron Radiation Laboratory. Data Deposition: The atomic coordinates have been deposited in the Protein Data Bank, www.pdb.org (PDB ID code 2QH7).

The authors declare no conflict of interest.

Ffreely available online through the PNAS open access option.

**To whom correspondence should be addressed at: Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375. E-mail: pjavennin@ucsd.edu.
tion peak, and high energy remote. X-ray diffraction data from a second crystal were collected to an enhanced resolution of 1.5 Å for refinement of the atomic coordinates (Table 1). The model was refined to an R-factor of 18.2% (Rfree = 22.2%). The high quality of the electron density is shown in Fig. 1. The refined model reveals a parallel homodimeric structure that includes the cytoplasmic surface area at the interface. Model validation using the MOLPROBITY (12) structure validation tool indicates that 96.8% of the amino acid residues are in the favored region of Φ/Ψ space.

The 2Fe–2S Cluster Cradle. The 2Fe–2S Cluster Cradle. The sequences Lys-42–Lys-55 and Cys-72–Asn-97 on each protomer comprise the cluster-binding domain (Fig. 1C). A prominent feature of the structure is the presence of two 2Fe–2S clusters that are separated by ~16 Å from each other within the larger helical cluster-binding domain (~30 Å across) (Fig. 1B). The N termini protrude from the bottom of the cluster-binding domain and link to the membrane-spanning sequence (data not shown) in the full-length protein, orienting this domain close to the OMM. A structural similarity search using the DALI server (13) revealed that this fold is novel when compared with the >650 known Fe–S proteins, and it is also unique when compared with the >44,200 known members of the structural databases. Hence we term this structural class the NEET fold.

The Buried Interface Is Unusual in MitoNEET. Molecular representations of mitoNEET are shown in Fig. 2 and highlight the packing of hydrophobic and charged residues. In Fig. 2A we show two orientations of the structure. The hydrophobic/aromatic residues predominantly cluster in the center of the molecule and stabilize the individual protomers (Fig. 2B). Charged residues cluster at the top of the β-cap domain and at the 2Fe–2S cluster-binding domain (Fig. 2C). This distribution creates a dimer that is polar at the top and bottom separated by a hydrophobic region. An interesting asymmetry of charge is located within the interior of the protein forming a macrodipole with the negative end at the top of the β-cap domain and the positive end within the cluster-binding domain, formed by an unexpected interprotomer hydrogen bond between His-58 and Arg-73 located near the cluster (Figs. 2C and 3). Interestingly, the conserved Arg-73 is located directly between the Cys ligands of the innermost Fe of the cluster (Fig. 3). This interaction stabilizes the dimer interface. Separating the poles of the dipole are the hydrophobic residues that form a ring around the two protomers within the dimer (Fig. 2B). The hydrophobic nature of this area may play a role in flexibility and mobility in the vicinity of the 2Fe–2S cluster contributing to its binding and release.

The 2Fe–2S Cluster Cradle. The sequences Lys-42–Lys-55 and Cys-72–Asn-97 on each protomer comprise the cluster-binding domain (Fig. 1B and D). Within the cluster-binding domain, the polypeptide backbone chain from Cys-72–Gly-85 folds into a coil that contains the three coordinating Cys ligands—Cys-72, Cys-74, and Cys-83—and cradles the 2Fe–2S cluster (Fig. 3). The fourth ligand

| Table 1. Summary of crystal parameters, data collection, and refinement statistics for mitoNEET |
|-----------------|-----------------|-----------------|-----------------|
| Space group | P2₁2₁2₁ | |
| Unit cell parameters | a = 46.81 Å, b = 49.62 Å, c = 59.01 Å |
| Data collection | λ₁ MADFe | λ₂ MADFe | λ₃ MADFe | λ₄ native |
| Wavelength, Å | 1.7418 | 1.3624 | 1.7374 | 0.97945 |
| Resolution range, Å | 38.21–1.80 | 29.70–1.80 | 38.18–1.80 | 46.83–1.50 |
| No. of observations | 150,328 | 179,865 | 150,046 | 604,419 |
| No. of unique reflections | 12,904 | 13,465 | 12,921 | 21,479 |
| Completeness, % | 95.6 (60.9)* | 99.6 (100) | 95.9 (63.4) | 94.7 (66.8)|
| Mean I/σ(I), I | 22.3 (1.9)* | 33.5 (11.7) | 22.1 (2.0) | 30.9 (3.2) |
| R_sym on I, % | 7.8 (50.4)* | 6.6 (19.6) | 8 (45.5) | 5.8 (75.4) |
| Highest resolution shell, Å | 1.85–1.80 | 1.85–1.80 | 1.85–1.80 | 1.55–1.50 |

ESU, estimated overall coordinate error (12, 31). R_sym = Σ|I_i – (λ_i)/Σ|I|, where |I_i| is the scaled intensity of the |th measurement and (λ_i) is the mean intensity for that reflection. R_cryt = Σ|F_{obs} – |F_{calc}|/Σ|F_{calc}|, where F_{obs} and F_{calc} are the calculated and observed structure factor amplitudes, respectively. R_free = R_cryt, but for 5.0% of the total reflections chosen at random and omitted from refinement.

Ast *Highest-resolution shell in parentheses.

Typically, the number of unique reflections used in refinement is less than the total number that were integrated and scaled. Reflections are excluded due to systematic absences, negative intensities, and rounding errors in the resolution limits and cell parameters.
Pioglitazone Stabilizes the 2Fe–2S Cluster. Pioglitazone, a member of the TZD class of insulin-sensitizer drugs (16–18), binds to mitoNEET in vitro as demonstrated by photoaffinity labeling (6). In an effort to observe the effects of pioglitazone binding on the protein stability of mitoNEET, we followed the characteristic absorbance of the 2Fe–2S cluster at 460 nm as a function of time at pH 6.0 under conditions known to lead to cluster release (9). The presence of pioglitazone (stoichiometric to the total 2Fe–2S cluster concentration) increased the stability by ~10-fold compared with the control sample lacking pioglitazone [Fig. 4A and supporting information (SI) Fig. 6]. In addition, two-dimensional homonuclear NMR methods (19) demonstrated that, although the overall structure of the protein remains intact upon drug binding, chemical shift changes are observed in the aromatic and aliphatic resonances. NMR resonance(s) of the ring protons of aromatic residues shift and exhibit new through-space couplings upon addition of pioglitazone (Fig. 4B). In addition, the amide and ring nitrogen protons of the Tyr-71 and Trp-75 residues are stabilized, leading to slower hydorogen/deuterium exchange rates (data not shown).

Discussion

Although >650 structures of Fe–S-containing proteins are currently available, the structure of mitoNEET presented here is unique among all known structures (>44,200 structures currently). The 2Fe–2S cluster of recombinant mitoNEET is reversibly reduced/oxidized at pH 8.0 (Fig. 5), consistent with a function for mitoNEET that involves electron transfer. Such functions could include redox reactions with metabolic intermediates, cofactors, and/or proteins localized at the OMM. As mitoNEET regulates maximal respiratory capacity in mouse heart mitochondria (7), it is possible that the protein acts as a sensor, adjusting oxidative capacity through participation in a redox-sensitive signaling pathway.

As intriguing is the unusual lability of the 2Fe–2S clusters in mitoNEET at pH ≤8, attributed to the protonation of the coordinating ligand His-87 (9); His-87 cannot serve as a stabilizing ligand for the 2Fe–2S when protonated. His-87 resides at the N terminus of the helical sequence AHTKHKNEET that is predicted to have only marginal helical content in solution (20) but is likely stabilized by cluster binding. Conversely, protonation of the His-87 could destabilize the helix, facilitating cluster release/transfer. A second histidine (His-58) that forms an unusual interprotomer hydrogen bond with Arg-73 (Fig. 3) is also located near the cluster. Disruption of this hydrogen bond would weaken the interprotomer interaction. Because Arg-73 is located sequentially between the Cys ligands of the innermost Fe of the cluster (Fig. 3), perturbation of its inter-

Fig. 1. Overall structural organization and domain topology of dimeric mitoNEET. (A Upper) The backbone tracing of each protomer colored in green and magenta, respectively, together with the 2Fe–2S, electron density (gray) map contoured at 1.5σ. The protomers pack in a parallel fashion with each protomer harboring a 2Fe–2S cluster, depicted as yellow (sulfur) and red (iron) spheres; N and C termini are indicated. (Lower) The box shows an expanded view of one 2Fe–2S cluster (rotated ~90° from upper view) and ligands and the corresponding 2Fe–2S, electron density (gray) map contoured at 2.0σ. (B) Ribbon diagram highlighting the two domains of the mitoNEET dimer. A six-stranded β-sheet forms the intertwined β-cap domain and a larger cluster-binding domain carries two 2Fe–2S clusters. (C) A topology diagram highlighting the organization of the secondary structural units (numbered) illustrates the strand swap between protomers. (D) Coded segments contributing to each domain are highlighted on the primary sequence and block diagram. Protomer sequences within the cluster-binding domain are colored in purple and dark green, and the sequences corresponding to the β-cap domain are given in pink and light green, respectively. The primary sequence of the resolved amino acid strand is shown in the box with the cluster and cap regions colored as for protomer A; the numbers indicate the first (Lys-42) and last (Lys-106) resolved amino acid. The ligands to the 2Fe–2S cluster shown in the expanded boxed view in A are indicated in bold and highlighted in gray. The 2Fe–2S binding cradle is located sequentially between two partial β-cap domains. Rendered with Pymol (11).
Pioglitazone is a highly hydrophobic molecule that is largely partitioned to the outer membrane (Fig. 1). Although several compounds activate peroxisome proliferator-activating receptors, data suggesting alternative modes of action involving mitochondria has accumulated (24). Whether the beneficial effects of TZDs on mitochondria including biogenesis and normalization of lipid oxidation (4, 5) are mediated through mitoNEET is unknown. However, these data, combined with those of Colca et al. (6), suggest that pioglitazone can bind and alter the properties of mitoNEET that is expressed in many insulin-responsive tissues (7). Although further biological and biophysical experiments are needed to relate in vivo binding to in vitro effects, mitoNEET may prove to be an alternative target for drug actions.

Materials and Methods

Construction of Bacterial Expression Plasmid and Purification of MitoNEET. The portion of the human mitoNEET cDNA corresponding to amino acids 33–108 was amplified by PCR and cloned into the pet21a+ vector. Expression in BL21-CodonPlus-RIL and purification was as described (9) with the time after induction extended to 18 h at 22°C. We included an additional cation exchange chromatography step using HiTrap (GE Healthcare) to achieve crystal-quality purification. The purified material had a peak centered at 458 nm and an optical ratio (A278/A458) of 2.3–2.4 under these buffer conditions. Optical spectra were measured on a Cary50 spectrometer (Varian, Walnut Creek, CA).

Pioglitazone Binding. Pioglitazone was solubilized in 0.1 M HCl to a concentration of 3.5 mM. Protein samples containing 15 μM...
The stability of the 2Fe–2S clusters was determined from monitoring with and without stoichiometric (mitoNEET) were measured in 200 mM phosphate-HCl (pH 7.5) spectra of mitoNEET, with and without pioglitazone (D2O, pH* 7.8, 35°C) are properties (solution pH (50 mM potassium phosphate/50 mM sodium chloride/5 mM Tris, concentration) were prepared in 98% D2O or 90% H2O/10% D2O, half-life by 14346/H20841.

The binding of pioglitazone to mitoNEET stabilizes the Fe–S cluster. (Fig. 4) The stability of the 2Fe–2S cluster of mitoNEET is increased in the presence of pioglitazone (15 M). The change in the signature absorbance spectrum (460 nm) of the 2Fe–2S cluster (oxidized form) was monitored as a function of time at pH 6.0 in the absence and presence of stoichiometric pioglitazone (15 μM). The binding of the insulin-sensitizing drug pioglitazone increased the observed half-life by ~10-fold. (A) 1D vectors derived from 2D homonuclear 1H NOESY spectra of mitoNEET, with and without pioglitazone (D2O, pH* 7.8, 35°C) are shown. The 1D vectors are along ω, at the ω chemical shift typical of the aromatic ring protons of Trp and/or Phe residues.

2Fe–2S centers (7.5 μM dimeric mitoNEET = 15 μM monomeric mitoNEET) were measured in 200 mM phosphate-HCl (pH 7.5) with and without stoichiometric (±10%) pioglitazone (25°C). The stability of the 2Fe–2S clusters was determined from monitoring their characteristic absorbance at 460 nm (λmax at pH 6.0) as a function of time (9). Measurements performed in the NMR buffer (50 mM potassium phosphate/50 mM sodium chloride/5 mM Tris, pH 7.8) gave the same results. The measured pH was the same at the beginning and end of each experiment. Control experiments with equal volume addition of 0.1 M HCl did not change the solution pH (±0.01 units) nor alter the physical and spectral properties (±2%) of the protein.

NMR Spectroscopy. NMR samples of 0.4 mM mitoNEET (protomer concentration) were prepared in 98% D2O or 90% H2O/10% D2O, 50 mM potassium phosphate, 50 mM sodium chloride, 5 mM Tris at pH 7.8. Similar results were obtained in buffers at pH 7.5 and 8.0. Ten microliters of pioglitazone was added in 1-μl incremental amounts to 450 μl of mitoNEET sample. This step was necessary to avoid locally high acidic spots that would destabilize the 2Fe–2S cluster. Following temperature equilibration, NMR spectra were acquired at 36°C by using Bruker DMX 500 MHz and Bruker DRX 600 MHz spectrometers. Homonuclear 1H 2D NOESY spectra were acquired with a mixing time of 400 ms. Spectral processing was performed by using Felix Software (Accelrys, San Diego, CA).

Crystallization. Initial crystallization screening was performed both in house and at Hauptman-Woodward Institute (Buffalo, New York). Screens were attempted around initial conditions that yielded crystals. Our final conditions were 100 mM Tris-HCl (pH 8), 100 mM NaCl, and 30–32% PEG 3000 in the reservoir. Samples were frozen (77 K) after a 1-min soak in 100 mM Tris-HCl (pH 8), 40% PEG3000 and sent frozen (77 K) to SSRL in an SSRL-supplied cassette system for data collection and analysis.

X-Ray Diffraction. Frozen crystals were screened by using the Stanford Automated Mounter (25) operated by Blu-Ice (26). The data were recorded on a 325-mm Marmosaic CCD detector. Data sets were collected from two crystals. A 1.5 Å resolution data set, used for structure refinement, was collected at SSRL BL11–1 from a 0.9- × 0.075- × 0.075-mm crystal. Data were collected from two locations on opposite ends of this crystal by using a 0.1- × 0.075-mm beam size. A three-wavelength Fe-MAD data set, used for initial phasing, was collected at SSRL BL9-2 from a 1.0- × 0.2- × 0.1-mm crystal. The wavelengths for data collection were selected by using a plot of f′ and f″ calculated with the program CHOOCH (27) from the x-ray fluorescence spectrum of the crystal. A total of 360° were

![Fig. 5. Possible functional implications of mitoNEET’s biophysical properties. MitoNEET is shown linked (magenta and green) to the OMM (gray) (not to scale). On the basis of mitoNEET biophysical properties, two possible functions are suggested: cluster transfer (blue arrows) and electron transfer (wine arrows). Right side (wine), our previous results (9) showed that the 2Fe–2S cluster could be reduced (1') and reoxidized (2') (~0.3 V ≤ Em ≤ 0.1 V). Left side, previous and current results showed that upon protonation of His-87 (1), the 2Fe–2S cluster dissociates from the protein (2). We here propose that the changes in the interaction of His-87 with the cluster are likely related to its function. In vivo this interaction may be broken by docking of another protein, thereby providing a convenient trigger for cluster release. Binding of pioglitazone to mitoNEET (Fig. 4) increases the stability of the 2Fe–2S cluster, thereby inhibiting release of the cluster.](image-url)
collected at each wavelength following the inverse-beam method with a wedge size of 30°. All data were processed with XDS (28).

Structural Determination. The structure of mitoNEET was determined by MAD phasing (10, 29). Data reduction and primary quality of the models were accomplished by using an automated MAD script developed by Ana Gonzalez (SSRL) that integrates [MOSFLM] (30) and scales [SCALA] (31) the data, phases the structure [SOLVE] (29), and autobuilds a partial model [RESOLVE] (32). Several rounds of automated model-building placement of 97-aa sidechains into electron density.

We thank Christopher L. Rife at the Joint Center for Structural Genomics for providing an automated programming script for coordinate validation and George Feher, Mel Okamura, and Don Blumenthal for many helpful discussions and enthusiastic support. We also thank Hauptman-Woodward Medical Research Institute for initial high-throughput screening experiments. R.N. thanks the Zevi Hermann Shapira Foundation for supporting the collaborative United States-Israeli efforts. This work was supported by that National Institutes of Health [Grants GM 41637 (to M. Okamura), 18024 and 18849 (to J.E.D.), and GM54038 and DK54441 (to P.A.J.)]. Portions of this research were carried out at the SSRL, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences.